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Recent analyses of Viking and Mariner solar comnjunction radio metric data have
led to two significantly different views of the average radial dependence of electron
density in the extended corona (5ry, <r<< 1 AU):

N () « r?

and

N, (r) = F23

This article compares the two models and concludes that the “steeper” model
(r~2-3): (1)is in excellent agreement with other experimental observations of coronal
electron density, (2) is consistent with the predicted and observed radial dependence of
the solar wind velocity, and (3) augments the case for a turbulence scale that expands
linearly with radial distance, when considered in combination with recent observations

July and August 1977

Electron Density in the Extended Corona — Two Views

of the radial dependence of RMS phase fluctuations.

l. Introduction

Recent analyses of Viking and Mariner radio metric data
acquired during solar conjunction have led to two signifi-
cantly differing views of the equatorial coronal electron
density function. In a series of recent articles (e.g., Refs.
1-3) Berman, using Viking S-band doppler noise, has shown
that the radial dependence of RMS phase (¢) in the extended
coronal is:

® Oca—l‘?’o

"Here to be considered as approximately 5rg Sr<1 AU, where r=
radial distance and rg = solar radius.

where a = signal path closest approach point, and emphasizes
that this result can be explained as the signal path integration
of the following nominal electron density (¥,) function:

Ne(r) o r—2.3
where r = heliocentric distance.

More recently, Callahan (Ref. 4), analyzing Viking S-X
doppler, has also concluded that phase fluctuations are of the
form:

pocg 13
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However, Callahan infers from the above relationship the fol-
lowing electron density fluctuation (#) radial dependence

noyr

A very common assumption made in coronal investiga-
tions is:

n/Ne =¢e® ey
Thus implying (for the Callahan Inference)
N(r) «r” 1.8

Muhleman (Ref. 5), analyzing Mariner 6 and Mariner 7 S-band
range data, has recently reported the following electron den-
sity models:

N, (r) « r~2:05 (Mariner 6)

N, (r) = r~2:98 (Mariner 7)

Although the Muhleman and Callahan results are not
completely complementary (in terms of a radially constant
ratio e=n/N,), they do provide a composite picture of a
significantly less “steep” corona in the way of radial
dependence.

That the difference between

Ne(r o p2
and
N (r) « 23
e

is substantial is easily seen by assuming the commonly
accepted average in situ measured value of approximately 7.5
electrons/cm3 (Refs. 6 and 7) and extrapolating back to 5
solar radii (5 r). One has

Radial N, @1 AU, N, @Srg,
dependence electrons/cm?3 electrons/cm?3
r-2 7.5 13,900
2.3 7.5 42,900
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so that the difference in the models at 5r, is seen to be a
factor of approximately 3. Tt will thus be the purpose of the
following sections to: (1) explore the theoretical basis of the
phase fluctuation — electron density relationship, and (2)
ascertain whether one or the other of the two proposed
models for &V, is more consistent with the many other experi-
mental observations of the corona made over the last decade
or s0.

Il. The Phase Fluctuation—Electron
Density Fluctuation Relationship

In 1968 Hollweg (Ref. 8), using a statistical ray analysis
based on geometric optics similar to that originally formulated
by Chandrasekhar in 1952 (Ref. 9), derived the following
expression for RMS phase induced by electron density fluctua-
tions in the solar corona:

9?2 2/r 1 2 J V.1 L, ()

rdr
a vV r2 - a2
where

A = signal wavelength

r, = classical electron radius
r = radial distance
a = signal closest approach point
€ = fluctuation to density ratio

L, = transverse scale of fluctuations

N, = electron density

Functionally similar expressions are given in Jokipii, (1969,
Ref. 10), and Little (1970, Ref. 11). Little notes that this
expression is valid for different functional forms of the fluctu-
ation spectrum, with only a slight change in the numerical
factor. Hollweg (1970, Ref. 12), subsequently derives the
expression specifically for the (now commonly accepted)
power law fluctuation spectrum, as follows:

# = 3 ("‘ 1) e WP Ln -2

&
A /2~ 2

with

a + 2= exponent of the three dimensional spatial spectrum
=35
L = outer scale of turbulence



Ho]lweg (Ref. 13, 1968) considers the relationship:

L(r)xr

to be a result of inhomogeneities expanding with a radially
out-flowing solar wind. In Ref. 8, Hollweg treats the most
common assumptions of a constant transverse scale and one
linear with radial distance:

L(r) = 200 km
and

L(r) = 30(r/r )km
where

Fy = solar radius

Substitution of these assumptions for the transverse scale
produces the following results® (with N, «r~(2+£) and
n/N, = €):

(1) Scale constant with radial distance

foq (a_(1~5+5))2

e f" 1 rdr
o
a (r2+g)2 \ - a?

(2) Scale linear with radial distance

o (a—(1.0+g))2

e ajw 1 rdr
A (r2+g)2 /r2 ~ a2

2The dependence on closest approach distance (@) is obtained by noting
that the integral:

fm r* dr
a \/r2—a2

is transformed via the substitution » = 4 (cos x)—1 to

m/2
& f (cos x)_(lm) dx
0

It is thus seen that the constant scale produces the rela-
tionship between RMS phase and electron.density fluctuations
inferred by Callahan (as described in Sect.I), and similarly,
usage of the linear transverse scale produces the functional
relationship argued by Berman.

The case for a linear scale is made by Little (1970, Ref.
11), and Houminer (1973, Ref. 14), among others. Their
data in support of a linear scale is reproduced here in Figs. 1
and 2. More recently, Jokipii (1973, Ref. 15), and Woo
(1977, Ref. 16), among others, have considered a constant
correlation scale on the order of:

L~2X10%to1X 107km

Scales on this order are obtained from spacecraft mea-
sured correlation times (7,) at approximately 1 AU of:

7,7~ 6 X 10% to 3 X 10%
with
L~ v, X T,
where

v_ = solar wind velocity (~ 350 km/s)

What is thus obtained is a radial correlation length at
approximately 1 AU; more appropriate for usage with a
columnar phase measurement such as doppler noise would be
a linear transverse correlation length as described by Hollweg
and experimentally observed by Little and Houminer.

Using Viking S-Band doppler noise and near simultaneous
Viking S-X range data, Berman (1977, Ref. 3), derived the
following scale for 60-s sample interval doppler noise (time
scale of the observations ~ 15 X 60 s):

L(a) = [%] (a/r,), km

€

or, assuming nominal bounding values of e:

L(a) = 43(afr,), km; €= 0.1
L(a) = 4300(a/r®), km; €=0.01
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Factoring into the scale the fluctuation frequency (v)
dependence (Berman, 1977, Ref. 17), one has:

L@) = 0—";—3 (ri ) (610>1'4,km

€ ®
where

7 = doppler sample interval, s

v =~ (2X15X )1

It is thus seen (i.e., given the well determined radial depen-
dence of phase fluctuations and the Hollweg derived relation-
ship) that if other experimental observations of the radial
dependence of electron density support a ¥ -3 corona, the
case for a linear transverse scale is considerably strengthened.

lll. Experimental Observations of Electron
Density in the Extended Corona

Over the last decade, a sizeable number of experiments,
utilizing a variety of techniques, have been performed to
measure and determine electron density in the extended
corona. Table 1 is a comprehensive listing of (the partial
results of) these experiments. Assuming an electron density of
the form:

N (r)er 39

the table presents the determined (or calculated) values of .
Of the thirteen values listed, the mean value is:

£ = 0298

with a one standard deviation of

lo(§) = 0.17

These results would certainly appear to argue strongly for
an average corona of:

N, (r) r23

Many of these determinations of electron density utilized data
whose closest approach points were in a region << 1 AU. A
slightly different method of proceeding would be to select
electron density values from some “interior’ region approxi-
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mating the region of observations, and then apply the power-
ful boundary condition of the average electron density at
1 AU:

N, (215r )~ 175 electrons/cm?

which is (reasonably) well known from in situ spacecraft
measurements. In this regard, the following electron density
values at 10 r_ are selected:

Newkirk (1967, Ref. 24; a compi-

lation of techniques 9800 electrons/cm®

Saito (1970, Ref. 23; photometry
and coronameter measurements
with heliographic latitude
solved for)

Counselman (1972, Ref. 20; pulsar
data with heliographic latitude
solved for)

Weisberg (1976, Ref. 19; pulsar
data with heliographic latitude
solved for)

8100 electrons/cm?

8400 electrons/cm?>

8000 electrons/cm?

The above yield an average electron density at 10 r_ of:

N,(10r.) = 8575 electrons/cm?®

It is encouraging that these diverse values for r= 107  are
nicely clustered about the mean value. Solving for a corona of
the form:

N o r_(2+£)
e

where

N,(10r,) = 8575 electrons/cm?>

N,(215r,) = 7.5 electrons/cm?®
yields:
£ =030
and

N (r) o 23

or, a similar value to the average computed from Table 1.



IV. Relationship Between Solar Wind
Velocity and Density

One writes the condition for constant mass efflux (Hollweg,
1968, Ref. 13), as:
F = Ne(r)vr(r)r2

where

F = constant

vr(r) = radial component of solar wind velocity

Hence, one might expect:

__F

G

Now at 1 AU, the average solar wind velocity is reasonably
well known (Hundhausen, 1972, Ref. 26; several years of Vela
spacecraft data):

v (215 r ) =~ 400 km/s

At r=10r,, one can use values from Models® of Hartle and
Barnes (Ref. 26), Wolff, Brandt, and Southwick (Ref. 26), and
Brandt, Wolff, and Cassinelli (Ref. 27), as follows:

v (107,)~ 170 km/s (Hartle and Barnes)
v (107, ) ~ 185 km/s (Wolff, Brandt, and Southwick)
v (10 7,) ~ 160 km/s (Brandt, Wolff, and Cassinelli)

or, an average value at = 10 r_ of:

v (10 7)) ~ 172 km/s

Assuming a power law® model for the solar wind velocity

3The various models depicting an increasing solar wind velocity with
radial distance are substantiated by experimental observations (e.g.,
Ekers, 1970, Ref. 28).

1t s recognized that a power law assumption for the solar wind
velocity in the extended corona is only approximate, similar to the
power law assumption for density in the extended corona.

and solving for the resultant radial dependence of the solar
wind velocity, one has:

Vr(r) fos r0.2 8

hence, the condition of constant mass efflux predicts:

1

* vr(r)

N =F

o p2.28

or, once again, the familiar value.

One thus notes that for a coronal electron density of the
form

N (Ir—(2+£)
e

the parameter ¢ can be simply identified as the radial depen-
dence of the solar wind velocity.

V. Comparison of RMS Phase to the
Scintillation Index

Using dual frequency Pioneer 9 spacecraft data, H. Chang
(1976, Ref. 29), was able to make simultaneous observations
of the integrated electron density () and the scintillation
index5 (m). He found the scintillation index to be proportional
to the integrated electron density, m o« I

Both the scintillation index and RMS phase are derived
from the integrated temporal columnar fluctuation spectrum

P):

m*(a) ~ f P(a, v)dv

@ ~ | Paav

SA measure of received signal level variations induced by electron
density fluctuations along the signal path.
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Hence, Chang’s data should certainly imply that RMS phase is
also proportional to integrated electron density. The condition
of ¢(a) « I combined with

n/Ne =¢; ¢ ¥ e(r)
requires (as shown in Sect. II):

Lryer

Thus, Chang’s findings additionally substantiate the case for a
linear transverse scale.

VI. Conclusions

It is here concluded that N (r) o« r2-3 is a very reasonable
assumption for the average radial dependence of electron
density in the extended corona, based on the very favorable
comparisons to:

(1) Other experimental observations of the radial depen-
dence of electron density.

. (2) The predicted and observed behavior of the solar wind
velocity.

(3) The observed relationship between the scintillation
index and integrated electron density.

Accepting this conclusion, the following observations and

L(r)er

n(r) o 7'_2'3
n/N, = €; e # e(r)
3

0.
vir)=r

On the other hand, if one combines the Callahan inference
with the least steep corona experimentally reported (Muhle-
man; Mariner 6, 1977) and the radial dependence of RMS
phase:

¢(d) o a—1.3
n(r) «r1-8

N = ;=205

then it is required that

L(r) « L,
n/N, = &(r)
o 025

Vr(’) o« r0.05

In regard to these required conditions, it is difficult to

assumptions form a self-consistent set in the region accept that the turbulence per unit density (€) increases with
sr, < r <1 AU: radial distance; even more difficult to reconcile is the required
near constancy (« r%-0%) of the solar wind velocity for
o(a) o« g~ 13 Sre€r<1 AU, in contradiction to the predicted and
observed average radial dependence (o r0-3) of the solar wind
N (r) o< r 23 velocity in this region.
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Table 1. Electron density measurements in the solar corona

Type of
Source Reference  Year 13 measurement
Edenhofer 18 1977 0.2 S-band range,
Helios
Berman 2 1977 0.30 S-band doppler
noise, Viking
Muhleman S 1977 0.05 S-band range,
Mariner 6
Muhleman 5 1977 0.08 S-band range,
Mariner 7
Weisberg 19 1976 0.3 Pulsar time delay
Counselman 20 1972 0.4b Pulsar time delay
Muhleman 21 1971 0.41 S-band range,
Mariner 6
Muhleman - 22 1970 0.33 Radio
interferometry
Saito 23 1970 0.5 Photometry
Newkirk 24 1967 0.34¢ Compilation of
techniqueé
Blackwell 25 1967 0.33 Solar eclipse
Blackwell 25 1967 0.33 Solar eclipse
Blackwell 25 1966 0.3 Solar eclipse

20ne of several solutions; this solution in best agreement with
average in situ density values at 1 AU.
YOne of several solutions; this solution included heliographic

latitude.

€Computed between N,(10ry) and average in situ value (7.5 clec-
trons/cm3) at 1 AU.
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Fig. 1. Scale size of electron density irregularities at heliocentric distances between
0.1t AU < r <1.0AU
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Fig. 2. Scale ! of small-scale plasma irregularities as a function of solar elongation
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